An a Priori Error Analysis of Operator Upscaling for the Acoustic Wave Equation
نویسندگان
چکیده
In many earth science problems, the scales of interest range from centimeters to kilometers. Computer power and time limitations prevent inclusion of all the fine-scale features in most models. However, upscaling methods allow creation of physically realistic and computationally feasible models. Instead of solving the problem completely on the fine scale, upscaling methods produce a coarse-scale solution that includes some of the fine-scale detail. Operator-based upscaling applied to the pressure/acceleration formulation of the acoustic wave equation solves the problem via decomposition of the solution into coarse and subgrid pieces. To capture local fine-scale information, small subgrid problems are solved independently in each coarse block. Then these local subgrid solutions are included in the definition of the coarse problem. In this paper, accuracy of the upscaled solution is determined via a detailed finite element analysis of the continuous-in-time and fully-discrete two-scale numerical schemes. We use lowest-order Raviart-Thomas mixed finite element approximation spaces on both the coarse and fine scales. Energy techniques show that in the L2 norm the upscaled acceleration converges linearly on the coarse scale, and pressure (which is not upscaled in this implementation) converges linearly on the fine scale. The fully discrete scheme is also shown to be second-order in time. Three numerical experiments confirm the theoretical rate of convergence results.
منابع مشابه
A Matrix Analysis of Operator-Based Upscaling for the Wave Equation
Scientists and engineers who wish to understand the earth’s subsurface are faced with a daunting challenge. Features of interest range from the microscale (centimeters) to the macroscale (hundreds of kilometers). It is unlikely that computational power limitations will ever allow modeling of this level of detail. Numerical upscaling is one technique intended to reduce this computational burden....
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملOperator Upscaling for the Acoustic Wave Equation
Modeling of wave propagation in a heterogeneous medium requires input data that varies on many different spatial and temporal scales. Operator-based upscaling allows us to capture the effect of the fine scales on a coarser domain without solving the full fine-scale problem. The method applied to the constant density, variable sound velocity acoustic wave equation consists of two stages. First, ...
متن کاملA High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients
This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...
متن کاملSolution of propagation of acoustic-gravity waves in the atmosphere using finite difference method of order two
Investigating waves propagation’s equation in the atmosphere is one of the important and widely used issues in various sciences, which has attracted many researchers. A type of propagating waves is an acoustic-gravity wave. These type of waves have a lot of stationarity properties and can be propagate to a high altitude in the atmosphere. The equation of acoustic-gravity wave propagation is a h...
متن کامل